If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x-49=81
We move all terms to the left:
x^2+18x-49-(81)=0
We add all the numbers together, and all the variables
x^2+18x-130=0
a = 1; b = 18; c = -130;
Δ = b2-4ac
Δ = 182-4·1·(-130)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{211}}{2*1}=\frac{-18-2\sqrt{211}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{211}}{2*1}=\frac{-18+2\sqrt{211}}{2} $
| 5b/2=8 | | 7.8x-9.8=5.8 | | 6^5x=30x | | -11x-15=114 | | 4(w-1)+7=5(2w+-3) | | -7x+-3x=-10 | | 19-m=8(1+m) | | 18x-11x+x=8 | | 4n+121/5=37 | | 59-3x=74 | | 3b=243 | | 17x+2x-2x-16x=7 | | 64^x=4^3x | | 8u^2-36=-4u^2 | | 89b-34=411 | | 7x+x-4x-x=12 | | 8u^2-36=4u^2 | | 10u=1,000,000,000 | | (x-52)+x=90 | | 15x+4x-14x+3x+x=18 | | 5^n=2 | | 4s-3=22 | | x-98=104 | | x/2-3/4=x | | y+6y+10=73 | | (x+18)+x=90 | | 6x+65=9x-13 | | Q^d(P)=500–10P | | 8(w-3)=w+24 | | 6(y-5)=6y-11 | | 1.042x=4.9 | | 9(p+4)=p+36 |